Heat Transport into and out of measuring cells

```
dimensions:
sides: 50 \times 10 = 500
ends: 10 \times 8 = 80
top: 50 \times 8 = 400
Q = \kappa \Sigma_i(A/d) \Delta T
acrylic
\kappa = .00033 \, T^{-1.81} \, W/(cm \, K)
at 0.45 K, \kappa = 8 \times 10^{-5} W/(cm K);
for 4 mW into single cell, full area, 1 cm wall
\Sigma_{\rm i}(A/d) \approx 2000 \text{ cm}; \ \Delta T = 25 \text{ mK}
time constant
\tau = (C/\kappa)(V/\Sigma_i(A/d))
at 0.45 K, C = 2.4 \times 10^{-4} \text{ J/(K cm}^3)
with V = 4000 \text{ cm}^3
\tau = 6 seconds
```

restricting surface area will result in a problem for heat flush

schematic of ³He transport system components and sizes

schematic of ³He transport system temperatures and heat transfers

diffusion from injection cell to IV1

flushing ³He from IV1 (1.6 Llt) into IV2 (8lit)

concentrating ³He from 8 liter volume into ~25 cm³

removal of liquid with high concentration of ³He and replacement with pure ⁴He

